Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of Exposure Time and Biological State on Acquisition and Accumulation of Erwinia amylovora by Drosophila melanogaster.

Identifieur interne : 000079 ( Main/Exploration ); précédent : 000078; suivant : 000080

Effects of Exposure Time and Biological State on Acquisition and Accumulation of Erwinia amylovora by Drosophila melanogaster.

Auteurs : Matthew Boucher [États-Unis] ; Rowan Collins [États-Unis] ; Kerik Cox [États-Unis] ; Greg Loeb [États-Unis]

Source :

RBID : pubmed:31126937

Descripteurs français

English descriptors

Abstract

Fire blight, caused by the bacterium Erwinia amylovora, is a disease devastating the production of rosaceous crops, primarily apple and pear, with worldwide distribution. Fire blight begins in the spring when primary inoculum is produced as ooze, which consists of plant sap, E. amylovora, and exopolysaccharides. Ooze is believed to be transferred to healthy tissues by wind, rain, and insects. However, the mechanisms by which insects locate and transmit ooze are largely undocumented. The goals of this study were to investigate the biological factors affecting acquisition of E. amylovora from ooze by a model dipteran, Drosophila melanogaster, and to determine whether flies are able to mechanically transfer this bacterium after acquisition. We found that the percentage of positive flies increased as exposure time increased, but nutritional state, mating status, and sex did not significantly alter the number of positive individuals. Bacterial abundance was highly variable at all exposure times, suggesting that other biological factors play a role in acquisition. Nutritional state had a significant effect on E. amylovora abundance, and food-deprived flies had higher E. amylovora counts than satiated flies. We also demonstrated that D. melanogaster transmits E. amylovora to a selective medium surface and hypothesize that the same is possible for plant surfaces, where bacteria can persist until an opportunity to colonize the host arises. Collectively, these data suggest a more significant role for flies than previously thought in transmission of fire blight and contribute to a shift in our understanding of the E. amylovora disease cycle.IMPORTANCE A recent hypothesis proposed that dissemination of Erwinia amylovora from ooze by flies to native rosaceous trees was likely key to the life cycle of the bacterium during its evolution. Our study validates an important component of this hypothesis by showing that flies are capable of acquiring and transmitting this bacterium from ooze under various biotic conditions. Understanding how dipterans interact with ooze advances our current knowledge of its epidemiological function and provides strong evidence for an underappreciated role of flies in the disease cycle. These findings may be especially important as they pertain to shoot blight, because this stage of the disease is poorly understood and may involve a significant amount of insect activity. Broadly, this study underscores a need to consider the depth, breadth, and origin of interactions between flies and E. amylovora to better understand its epidemiology.

DOI: 10.1128/AEM.00726-19
PubMed: 31126937
PubMed Central: PMC6643243


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effects of Exposure Time and Biological State on Acquisition and Accumulation of Erwinia amylovora by Drosophila melanogaster.</title>
<author>
<name sortKey="Boucher, Matthew" sort="Boucher, Matthew" uniqKey="Boucher M" first="Matthew" last="Boucher">Matthew Boucher</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Entomology, Cornell AgriTech, New York State Agricultural Experiment Station, Cornell University, Geneva, New York, USA mtb245@cornell.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Entomology, Cornell AgriTech, New York State Agricultural Experiment Station, Cornell University, Geneva, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Ithaca (New York)</settlement>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
<author>
<name sortKey="Collins, Rowan" sort="Collins, Rowan" uniqKey="Collins R" first="Rowan" last="Collins">Rowan Collins</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Environmental Studies, Mount Holyoke College, Hadley, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Environmental Studies, Mount Holyoke College, Hadley, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cox, Kerik" sort="Cox, Kerik" uniqKey="Cox K" first="Kerik" last="Cox">Kerik Cox</name>
<affiliation wicri:level="4">
<nlm:affiliation>Section of Plant Pathology & Plant Microbe Biology, School of Integrated Plant Sciences, Cornell AgriTech, New York State Agricultural Experiment Station, Cornell University, Geneva, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Section of Plant Pathology & Plant Microbe Biology, School of Integrated Plant Sciences, Cornell AgriTech, New York State Agricultural Experiment Station, Cornell University, Geneva, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Ithaca (New York)</settlement>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
<author>
<name sortKey="Loeb, Greg" sort="Loeb, Greg" uniqKey="Loeb G" first="Greg" last="Loeb">Greg Loeb</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Entomology, Cornell AgriTech, New York State Agricultural Experiment Station, Cornell University, Geneva, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, Cornell AgriTech, New York State Agricultural Experiment Station, Cornell University, Geneva, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Ithaca (New York)</settlement>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31126937</idno>
<idno type="pmid">31126937</idno>
<idno type="doi">10.1128/AEM.00726-19</idno>
<idno type="pmc">PMC6643243</idno>
<idno type="wicri:Area/Main/Corpus">000068</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000068</idno>
<idno type="wicri:Area/Main/Curation">000068</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000068</idno>
<idno type="wicri:Area/Main/Exploration">000068</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Effects of Exposure Time and Biological State on Acquisition and Accumulation of Erwinia amylovora by Drosophila melanogaster.</title>
<author>
<name sortKey="Boucher, Matthew" sort="Boucher, Matthew" uniqKey="Boucher M" first="Matthew" last="Boucher">Matthew Boucher</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Entomology, Cornell AgriTech, New York State Agricultural Experiment Station, Cornell University, Geneva, New York, USA mtb245@cornell.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Entomology, Cornell AgriTech, New York State Agricultural Experiment Station, Cornell University, Geneva, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Ithaca (New York)</settlement>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
<author>
<name sortKey="Collins, Rowan" sort="Collins, Rowan" uniqKey="Collins R" first="Rowan" last="Collins">Rowan Collins</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Environmental Studies, Mount Holyoke College, Hadley, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Environmental Studies, Mount Holyoke College, Hadley, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cox, Kerik" sort="Cox, Kerik" uniqKey="Cox K" first="Kerik" last="Cox">Kerik Cox</name>
<affiliation wicri:level="4">
<nlm:affiliation>Section of Plant Pathology & Plant Microbe Biology, School of Integrated Plant Sciences, Cornell AgriTech, New York State Agricultural Experiment Station, Cornell University, Geneva, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Section of Plant Pathology & Plant Microbe Biology, School of Integrated Plant Sciences, Cornell AgriTech, New York State Agricultural Experiment Station, Cornell University, Geneva, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Ithaca (New York)</settlement>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
<author>
<name sortKey="Loeb, Greg" sort="Loeb, Greg" uniqKey="Loeb G" first="Greg" last="Loeb">Greg Loeb</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Entomology, Cornell AgriTech, New York State Agricultural Experiment Station, Cornell University, Geneva, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, Cornell AgriTech, New York State Agricultural Experiment Station, Cornell University, Geneva, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Ithaca (New York)</settlement>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Drosophila melanogaster (microbiology)</term>
<term>Drosophila melanogaster (physiology)</term>
<term>Erwinia amylovora (physiology)</term>
<term>Female (MeSH)</term>
<term>Male (MeSH)</term>
<term>Malus (microbiology)</term>
<term>Plant Diseases (microbiology)</term>
<term>Pyrus (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Drosophila melanogaster (microbiologie)</term>
<term>Drosophila melanogaster (physiologie)</term>
<term>Erwinia amylovora (physiologie)</term>
<term>Femelle (MeSH)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Malus (microbiologie)</term>
<term>Mâle (MeSH)</term>
<term>Pyrus (microbiologie)</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Drosophila melanogaster</term>
<term>Maladies des plantes</term>
<term>Malus</term>
<term>Pyrus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Drosophila melanogaster</term>
<term>Malus</term>
<term>Plant Diseases</term>
<term>Pyrus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Drosophila melanogaster</term>
<term>Erwinia amylovora</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Drosophila melanogaster</term>
<term>Erwinia amylovora</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Female</term>
<term>Male</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Femelle</term>
<term>Mâle</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Fire blight, caused by the bacterium
<i>Erwinia amylovora</i>
, is a disease devastating the production of rosaceous crops, primarily apple and pear, with worldwide distribution. Fire blight begins in the spring when primary inoculum is produced as ooze, which consists of plant sap,
<i>E. amylovora</i>
, and exopolysaccharides. Ooze is believed to be transferred to healthy tissues by wind, rain, and insects. However, the mechanisms by which insects locate and transmit ooze are largely undocumented. The goals of this study were to investigate the biological factors affecting acquisition of
<i>E. amylovora</i>
from ooze by a model dipteran,
<i>Drosophila melanogaster</i>
, and to determine whether flies are able to mechanically transfer this bacterium after acquisition. We found that the percentage of positive flies increased as exposure time increased, but nutritional state, mating status, and sex did not significantly alter the number of positive individuals. Bacterial abundance was highly variable at all exposure times, suggesting that other biological factors play a role in acquisition. Nutritional state had a significant effect on
<i>E. amylovora</i>
abundance, and food-deprived flies had higher
<i>E. amylovora</i>
counts than satiated flies. We also demonstrated that
<i>D. melanogaster</i>
transmits
<i>E. amylovora</i>
to a selective medium surface and hypothesize that the same is possible for plant surfaces, where bacteria can persist until an opportunity to colonize the host arises. Collectively, these data suggest a more significant role for flies than previously thought in transmission of fire blight and contribute to a shift in our understanding of the
<i>E. amylovora</i>
disease cycle.
<b>IMPORTANCE</b>
A recent hypothesis proposed that dissemination of
<i>Erwinia amylovora</i>
from ooze by flies to native rosaceous trees was likely key to the life cycle of the bacterium during its evolution. Our study validates an important component of this hypothesis by showing that flies are capable of acquiring and transmitting this bacterium from ooze under various biotic conditions. Understanding how dipterans interact with ooze advances our current knowledge of its epidemiological function and provides strong evidence for an underappreciated role of flies in the disease cycle. These findings may be especially important as they pertain to shoot blight, because this stage of the disease is poorly understood and may involve a significant amount of insect activity. Broadly, this study underscores a need to consider the depth, breadth, and origin of interactions between flies and
<i>E. amylovora</i>
to better understand its epidemiology.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31126937</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>07</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>85</Volume>
<Issue>15</Issue>
<PubDate>
<Year>2019</Year>
<Month>08</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Effects of Exposure Time and Biological State on Acquisition and Accumulation of Erwinia amylovora by Drosophila melanogaster.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00726-19</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AEM.00726-19</ELocationID>
<Abstract>
<AbstractText>Fire blight, caused by the bacterium
<i>Erwinia amylovora</i>
, is a disease devastating the production of rosaceous crops, primarily apple and pear, with worldwide distribution. Fire blight begins in the spring when primary inoculum is produced as ooze, which consists of plant sap,
<i>E. amylovora</i>
, and exopolysaccharides. Ooze is believed to be transferred to healthy tissues by wind, rain, and insects. However, the mechanisms by which insects locate and transmit ooze are largely undocumented. The goals of this study were to investigate the biological factors affecting acquisition of
<i>E. amylovora</i>
from ooze by a model dipteran,
<i>Drosophila melanogaster</i>
, and to determine whether flies are able to mechanically transfer this bacterium after acquisition. We found that the percentage of positive flies increased as exposure time increased, but nutritional state, mating status, and sex did not significantly alter the number of positive individuals. Bacterial abundance was highly variable at all exposure times, suggesting that other biological factors play a role in acquisition. Nutritional state had a significant effect on
<i>E. amylovora</i>
abundance, and food-deprived flies had higher
<i>E. amylovora</i>
counts than satiated flies. We also demonstrated that
<i>D. melanogaster</i>
transmits
<i>E. amylovora</i>
to a selective medium surface and hypothesize that the same is possible for plant surfaces, where bacteria can persist until an opportunity to colonize the host arises. Collectively, these data suggest a more significant role for flies than previously thought in transmission of fire blight and contribute to a shift in our understanding of the
<i>E. amylovora</i>
disease cycle.
<b>IMPORTANCE</b>
A recent hypothesis proposed that dissemination of
<i>Erwinia amylovora</i>
from ooze by flies to native rosaceous trees was likely key to the life cycle of the bacterium during its evolution. Our study validates an important component of this hypothesis by showing that flies are capable of acquiring and transmitting this bacterium from ooze under various biotic conditions. Understanding how dipterans interact with ooze advances our current knowledge of its epidemiological function and provides strong evidence for an underappreciated role of flies in the disease cycle. These findings may be especially important as they pertain to shoot blight, because this stage of the disease is poorly understood and may involve a significant amount of insect activity. Broadly, this study underscores a need to consider the depth, breadth, and origin of interactions between flies and
<i>E. amylovora</i>
to better understand its epidemiology.</AbstractText>
<CopyrightInformation>Copyright © 2019 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Boucher</LastName>
<ForeName>Matthew</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Entomology, Cornell AgriTech, New York State Agricultural Experiment Station, Cornell University, Geneva, New York, USA mtb245@cornell.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Collins</LastName>
<ForeName>Rowan</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental Studies, Mount Holyoke College, Hadley, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cox</LastName>
<ForeName>Kerik</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Section of Plant Pathology & Plant Microbe Biology, School of Integrated Plant Sciences, Cornell AgriTech, New York State Agricultural Experiment Station, Cornell University, Geneva, New York, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Loeb</LastName>
<ForeName>Greg</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Entomology, Cornell AgriTech, New York State Agricultural Experiment Station, Cornell University, Geneva, New York, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>07</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004331" MajorTopicYN="N">Drosophila melanogaster</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044084" MajorTopicYN="N">Erwinia amylovora</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027845" MajorTopicYN="N">Malus</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031989" MajorTopicYN="N">Pyrus</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Diptera</Keyword>
<Keyword MajorTopicYN="Y">fire blight</Keyword>
<Keyword MajorTopicYN="Y">insect-microbe interactions</Keyword>
<Keyword MajorTopicYN="Y">plant disease epidemiology</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>03</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>05</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>5</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>5</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31126937</ArticleId>
<ArticleId IdType="pii">AEM.00726-19</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.00726-19</ArticleId>
<ArticleId IdType="pmc">PMC6643243</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 1999 May 21;284(5418):1322-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10334981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3376-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10725405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2005 Dec 15;253(2):185-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16253442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Mar;72(3):1956-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16517643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 May 15;104(20):8253-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17494737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1974 Mar 15;183(4129):1081-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17738972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2008 Jul;9(4):425-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18705858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2009 Apr;55(4):457-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19396246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2009 Nov;99(11):1237-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19821727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2010 Apr;192(7):2020-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20118253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2011 May;35(3):555-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21251027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2012 Sep;78(17):6327-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22773631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 May 15;10(5):e0127560</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25978369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2015 Oct;105(10):1302-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26413887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurogenet. 2016 Jun;30(2):101-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27309215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2017 Apr;107(4):403-411</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28045342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2018 May 31;84(12):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29625979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Entomol. 2018 Aug 29;55(5):1264-1270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29659932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2016 Jul;100(7):1307-1313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30686185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2016 Apr;100(4):802-809</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30688602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2003 Jul;87(7):756-765</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30812883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biol Macromol. 1994 Dec;16(6):290-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7537077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 1996 Jun 7;287(1):59-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8765060</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
<li>État de New York</li>
</region>
<settlement>
<li>Ithaca (New York)</li>
</settlement>
<orgName>
<li>Université Cornell</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Boucher, Matthew" sort="Boucher, Matthew" uniqKey="Boucher M" first="Matthew" last="Boucher">Matthew Boucher</name>
</region>
<name sortKey="Collins, Rowan" sort="Collins, Rowan" uniqKey="Collins R" first="Rowan" last="Collins">Rowan Collins</name>
<name sortKey="Cox, Kerik" sort="Cox, Kerik" uniqKey="Cox K" first="Kerik" last="Cox">Kerik Cox</name>
<name sortKey="Loeb, Greg" sort="Loeb, Greg" uniqKey="Loeb G" first="Greg" last="Loeb">Greg Loeb</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000079 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000079 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31126937
   |texte=   Effects of Exposure Time and Biological State on Acquisition and Accumulation of Erwinia amylovora by Drosophila melanogaster.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31126937" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020